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Abstract. For low concentrations, the occupied sites in Q2R cellular automata on the 
square lattice are known to be confined to the smallest rectangles surrounding them. 
However, they do not necessarily f i l l  out the whole rectangle allowed for them. The effective 
confinement transition is found numerically to agree well with that of bootstrap percolation. 

In Q2R cellular automata [ 11 on the square lattice, the sites initially are occupied with 
probability p and empty with probability 1 - p .  In the following dynamics, a site flips 
its status if it has as many occupied as empty neighbours. This approximation of the 
spin-; Ising model mimics a microcanonical ensemble with constant energy but is not 
ergodic [2]. Nevertheless it seems to give correct Ising results provided one waits long 
enough or starts with an Ising configuration [3,4]. 

In  Q2R dynamics on the square lattice, a group of occupied sites in an otherwise 
empty lattice will always be restricted to the smallest rectangle surrounding it; all the 
empty sites surrounding that rectangle have three or four empty neighbours and thus 
never become occupied [l]. However, the corners of such an occupied rectangle do  
not necessarily remain occupied in the dynamical evolution, and it is not clear if in 
the later development all sites of an initially only partly filled rectangle will become 
occupied. I f  in a large and mostly empty lattice there are several groups of occupied 
sites, and if the surrounding smallest rectangles do  not overlap, the occupied sites 
remain restricted to their rectangles; if the rectangles overlap or touch, the largest 
common rectangle surrounding the joint set of points defines the borderline of spin 
confinement. If  this largest rectangle spans the lattice, the occupied sites might later 
be found nearly everywhere; if we have only finite distinct rectangles, each group of 
occupied sites remains confined to its own rectangle during all later iterations, and no 
information is spread. Rectangles are distinct in the Q2R dynamics if they are separated 
by a double line of empty sites. 

The question under what conditions the surrounding rectangles join into a percolat- 
ing network is known from bootstrap percolation [ 5 , 6 ]  and has been used there [7] 
as a cluster-flipping algorithm in the spirit of Swendsen-Wang dynamics of Ising 
models. In bootstrap percolation on the square lattice, an empty site becomes occupied 
if at least two of its four neighbours are occupied; occupied sites stay so forever. 
(Usually in bootstrap percolation the role of empty and occupied is reversed; the 
present notation corresponds to aspects of diffusion percolation [ 5 ] . )  Here the rec- 
tangles do  fill u p  completely, if initially they were only partly occupied. Again, occupied 
rectangles stay distinct if separated by empty double lines. In L x L lattices, the 
surrounding rectangles merge into one network finally occupying the whole lattice if 
the initial concentration p is above the size-dependent [ 6 , 8 ]  threshold p c  = 0.24,/ln( L) .  
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Thus we want to know if in Q2R the rectangles surrounding the initially occupied 
sites also finally fill up  and  make that problem equivalent to bootstrap percolation. 

A simple test shows that this is not the case. I f  we mark all sites which have been 
occupied at  least once during the Q2R evolution, the resulting clusters are often but 
not always rectangular; figure 1 shows one of the exceptions. Thus there is no  exact 
correspondence of Q2R and  bootstrap percolation. Instead, we now ask if at least the 
thresholds p c  of Q2R and  bootstrap percolation agree: critical points can be the same 
even if minor differences exist between different models. 

What Q2R threshold should we take? The Curie point at 8% concentration is 
roughly independent of size and clearly unrelated to bootstrap percolation. The cluster 
period threshold [9] of Q2R is numerically difficult to determine accurately, and the 
damage-spreading threshold [4] for Q2R depends on both the observation time and  
the initial damage (single site versus whole line). Thus we select a threshold definition 
closer to the above ideas of spin confinement: for p below this threshold, the set of 
sites marked as occupied at least once during the development remains small and  stays 
constant after some time; for larger p the concentration of sites marked in this way 
grows appreciably and  reaches no plateau. To make a quantitative distinction, we 
made simulations up  to a predetermined number t of sweeps through the lattice and  
called the spins in that sample confined if during the last 10% of the iterations no new 
sites became marked as occupied. 
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Figure 1. Example of a 23 x 24 Q2R lattice. The upper part shows the initially occupied 
sites, the lower part the sites marked as at least once occupied ( p = 0.065). After 19 sweeps 
no additional sites were marked in this simulation; the total period of the limit cycle was 
6230 sweeps on this example. 
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We used the Herrmann-type [4] vectorised multispin algorithm with lo9 updates 
per second and per Cray processor. For each system size L we varied the initial 
concentration p until 5 out of 10 samples had confined spins. No systematic variation 
with observation time t from lo3 to lo5 iterations was found except for the largest 
lattices at short times. The effective threshold concentrations were 0.054, 0.043, 0.039 
and 0.032 for L = 128, 384, 1152 and 3968, with errors of about 0.002. (For t = 1000 
we found 0.026 and 0.021 for L = 3968 and 12 032; for t = 100 already at L = 128 a 
threshold of only 0.044 was observed; apparently observation times t smaller than the 
system size give systematic errors.) These data are in reasonable agreement with the 
above result 0.245/1n( L )  for bootstrap percolation [6]. (The prefactor is smaller if we 
demand that no new sites become occupied from time t/2 to time t.) Thus the 
logarithmic time dependence of some damage-spreading thresholds is replaced by a 
logarithmic size dependence for the confinement threshold and makes confinement 
similar to bootstrap percolation. 

In addition we measured the median times to reach a plateau in the number of 
sites marked as occupied at least once. For that purpose, the concentration p was 
fixed at 0.044 within the region of the above thresholds. We checked how many 
iterations were needed until, during the latter half, the set of marked sites no longer 
increased. These times fluctuated by several orders of magnitude. Their medians were 
130, 1730, 2200, 180 000 and 5 x lo6 for L = 128, 256, 384, 512 and 640, from 100 runs 
each (except from 10 runs at L=640). Figure 2 shows these data as well as the 
corresponding results up to L = 1152 if only during the last tenth of the simulation, 
the number of marked sites was required to be constant. An exponential size depen- 
dence of this confinement time is clearly visible, with periods reminiscent of Q2R limit 
cycles [2], but easier to measure since now the times for the same L are much shorter. 
This result at first seems at variance with the above observation that the effective 
threshold is independent of time for large times. However, the exponential dependence 
of time on length means a logarithmic dependence of length on time, and thus a 
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Figure 2. Semilogarithmic plot of median time (decadic logarithm) at p = 0.044 against 
linear system dimension L (in units of 128).  The data refer to a plateau during the latter 
half (upper data, 0 )  or latter 10% (lower data, 0) of the observation time. The + data in 
the middle show for comparison the median total period of the limit cycle at the much 
lower concentration 0.012, similar to [2]. 
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log(1og t )  dependence of the threshold on time. This log-log dependence of the effective 
thresholds on observation time, that results from the exponential behaviour in figure 
2, is probably too weak to be detected from our numerical data. 

We thus found a logarithmic size dependence of the confinement transition in Q2R; 
the small influence of the observation time is explained through the exponential size 
dependence of the times involved. The work took 39 h execution time on a Cray-YMP 
processor. 
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